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There is a wide class of phenomena which can be interpreted by using a dynamical system with

a threshold as a model.

Examples of these systems can be found in fields as diverse as digital

communication and neurobiology. In this paper we discuss the dynamical behavior of threshold
systems in the presence of noise. We show that both the dithering effect, well known to electronic
engineers since the 1950s, and the phenomenon of stochastic resonance in threshold systems, recently
introduced in the physical literature, can be described within the same scheme of noise activated
processes. For these phenomena, in the absence of any frequency matching condition, the use of
the term resonance is questionable and the notion of noise induced threshold crossings is more

appropriate.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

Dynamical models which make use of threshold de-
vices have been employed, in recent years, in many fields
of scientific research to describe a wide range of physical
phenomena. Examples of these systems can be found in
fields as diverse as digital communication (e.g., analog
to digital conversion), neurobiology (e.g., neuron firing),
natural events (e.g., avalanches), laser systems (e.g., laser
threshold), complex systems (e.g., bifurcations), chemi-
cal systems (e.g., activation threshold), and political sci-
ences (e.g., electoral schemes). Typically, nothing hap-
pens in these systems as long as a certain control pa-
rameter remains below a threshold value. As soon as
the control parameter exceeds the threshold value, ev-
erything that happens does so (almost) instantaneously.

As an example let us consider the following simple
threshold system in which y is the output of a system
S to the input z:

0forw<%
Y= 1)
1 form>%.

Here the threshold value has been set equal to 1/2 and
0 < z < 1. We can represent the action of system S, in
short form, as y = Q[z]. The response characteristic of §
is illustrated in Fig. 1(a) (see Sec. II). For comparison,
a linear response characteristic is also shown. The linear
response output consists of a slowly changing ramp y =
z going from one level (state 0) to the next (state 1)
continuously. Instead, the threshold system output y =
Q[z], corresponding to a quantized signal, switches in one
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step from 0 to 1 when x crosses the threshold value. Here,
this value has been placed at half the step magnitude but,
in general, x and y can have different domains.
Threshold systems can also be seen as a basic model
for the wider class of bistable dynamical systems. In
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FIG. 1. Threshold system output y vs z (solid line): (a)
in the absence of noise dither [for comparison we report also
the linear response characteristic y = z (dotted line)]; (b)
y with dither noise of intensity L = 0.1; (¢) L = 0.5; and
(d) L = 1.0. The data presented in this paper have been
obtained via digital simulation. Noise intensity, system input
and output are expressed here in arbitrary units (a.u.).
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these systems some of the peculiar phenomena observed
in the presence of bistability still survive. Among these
the stochastic resonance phenomenon (SR) [1,2] recently
gained some popularity. The SR was proposed more than
ten years ago as a possible nonlinear mechanism to en-
hance the effect of a small periodic force by adding to it
some external noise of a proper intensity. It was exper-
imentally observed [2] in a number of bistable physical
systems. Recently some attention has been devoted to
the study of SR in threshold systems [3-6], with the aim
being to realize signal processing oriented devices [6] op-
erating under the SR condition.

The effect of adding noise to the input signal on the re-
sponse characteristic of a threshold system is the subject
of the present paper, which is organized as follows.

In Sec. II, we start discussing a well known noise in-
duced phenomenon in threshold systems: the dithering
effect. In digital signal processing [7], an analog signal is
sampled at discrete times and converted into a sequence
of numbers. Since the register length is finite, the con-
version procedure, called signal quantization, results in
distortion and a loss of signal detail. In order to avoid
distortion and recover signal detail, it has become a com-
mon practice, since the 1950s, to add a small amount of
noise to the analog signal before quantization — a tech-
nique called dithering. In this section we briefly review
the dithering effect as developed in the digital signal pro-
cessing theory and propose a detailed description of the
optimal condition for the linearity of the response char-
acteristic.

The noise-induced threshold crossing, within the
framework of the stochastic resonance phenomenon, is
the subject of Sec. III. There, we show that, for the
class of threshold systems considered here, there is no
frequency dependence in the system response, and the in-
crease in the periodic output amplitude can be explained
without recourse to any synchronization condition, as a
special case of the dithering effect discussed in Sec. II.

In Sec. IV we conclude with a short comment on the
relation between dithering as a noise-induced threshold
crossing effect, and stochastic resonance as a frequency
matching condition.

II. THE DITHERING EFFECT

Digital signal processing is a widespread and power-
ful collection of techniques in signal analysis [7] that is
commonly used in many fields of scientific research and
human activity. When applied to the physical sciences,
the digital sequence to be processed is generally obtained
by sampling a band limited physical signal at discrete
intervals of time. The sequence of samples thus ob-
tained is usually stored, in a binary format, in finite word
length registers. Conversion from a continuous (analog)
signal to a digital one consists of two different opera-
tions: time discretization and amplitude quantization.
Time discretization, if properly applied, can be shown
to be error free. The effects of amplitude quantization
(finite word-length) are instead always present and man-
ifest themselves in a number of different ways. First, due
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to the presence of a nonlinear response characteristic, sig-
nal quantization leads to an unavoidable distortion, i.e.,
the presence of spurious signals in a frequency band dif-
ferent from the original one. There is also a loss of signal
detail that is small compared to the quantization step
(the dynamic range of a digital signal is finite). In the
following, we will refer to the simple and more common
case of uniform rounding quantization [as in Eq. (1)].

To deal with such effects, engineers have developed a
general scheme [8-16] in which the notion of quantization
error, 7, plays a central role. 7 = y — = represents the er-
ror introduced by the coarseness of the amplitude quan-
tization in the analog-to-digital conversion. It is clear
from this definition that if we had a linear response char-
acteristic (apart from amplification factors), n would be
zero. Usually 7 is treated as an additive noise whose sta-
tistical properties depend upon the input signal = [8,9].
It has been shown [10,11], however, that the minimum
loss of statistical data from the input = occurs when the
quantization error can be made independent of z. In the
search for a technique to realize such an independence
condition, it was proposed to use an added external sig-
nal (dither) before quantization. A number of studies
on the proper choices of dither signals were performed
in the last 30 years [8-16]. The main conclusions can
be summarized as follows: (i) the addition of a proper
dither signal can cause the independence and whitening
of the quantization error resulting in both a reduction of
signal distortion and an improvement of the system dy-
namic range; (ii) the best choice for the dither signal is
a random dither uniformly distributed within an interval
of amplitude equal to the quantization step.

In this paper we propose a different approach to the
study of the dithering effect. Instead of considering the
statistics of the quantization noise 7, which depends on
the input signal x, we focus on the statistics of the dither
signal. Let us start by considering the system S intro-
duced before. In Fig. 1(b), a sample output y to a ramp
z with a small uniform noise added to it is shown. The
presence of the noise induces random jumps concentrated
in a small interval (jump region) centered around the
threshold value z = 0.5. When one increases the noise
intensity, the jump region extends symmetrically [Fig.
1(c)] up to cover the whole input interval [Fig. 1(d)].
Figure 2 reproduces the average output (y,), for differ-
ent noise values. As can be seen, the averaged system
response characteristic is a function of the noise and ap-
proaches the linear one as the noise intensity approaches
the quantization step. Figure 3 reproduces the averaged
output (y,) in the presence of a white Gaussian noise. In
this case, the averaged output (y,) differs qualitatively
from the uniform noise case. In order to quantitatively
compare the averaged system response characteristic in
the presence of either uniform or Gaussian noise with the
linear response, we introduce the quantity D:

D=/ [ (w)-s)a. (2)

D is a measure of the distance between (y) and the
linear response y = z. In Fig. 4, we plot D versus o
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FIG. 2. Averaged system output (y.) vs z for various uni-
form noise intensities: (1) L = 0.2; (2) L = 0.5; (3) L = 1.0;
(4) L =1.25; (5) L = 2.1. For comparison we report also the
linear response characteristic (dotted line). All the quantities
are in a.u..

for both uniform and Gaussian noise [17]. In the small
noise region, the two curves are almost the same. As
the noise intensity increases, however, a qualitative dif-
ference becomes apparent; in the uniform noise case, D
reaches the value D = 0, which means that the aver-
aged output (y) coincides with the linear characteristic
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FIG. 3. Averaged system output (y,) vs z for various
Gaussian noise intensities: (1) o = 0.05; (2) o = 0.2; (3)
o =0.4; (4) o = 0.8; (5) 0 = 1.3. For comparison we report
also the linear response characteristic (dotted line). All the
quantities are in a.u.
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FIG. 4. D (a.u.) vs o (a.u.). Gaussian noise: digital sim-
ulation (circles), theory (solid line). Uniform noise: digital
simulation (squares), theory (dashed line). Statistical errors
are within 3%.

z. Such an optimal condition is not reached in the case
of Gaussian noise, where D remains greater than zero for
all the noise values. It is worth noticing that the mini-
mum value D = 0 is reached, in the uniform noise case,
when the standard deviation o = 1/4/12. This amounts
to a uniform noise with amplitude L = 1 equal to the
quantization step, as previously stated in (ii). For larger
noise intensity, the Gaussian case crosses the uniform one
and remains smaller for all the noise values. The distance
between the two curves decreases for larger noise inten-
sity. In both cases, the D vs o shows a nonmonotonic
behavior with a clear minimum. This means that an
optimal noise value exists where the averaged output re-
sponse characteristic comes closer to the linear one. In
particular, for the uniform noise case, if the intensity of
the noise is properly matched, the averaged output is in-
distinguishable from the linear response output. Such a
noise induced linearization is a phenomenon which has
been already observed in a number of cases for a variety
of nonlinear systems [18].

Here, we propose a theoretical description for the case
of threshold systems. The D versus o evolution can be
described by considering the probability density function
(PDF) f(&) of the noise dither added to the input signal
(we use the notation with subscripts « and g, as in &, and
&g, to distinguish between the uniform and Gaussian case,
respectively). The average value of the system response
can be written as

+oco
(u) = (Qlz +£]) = /_ Qlz +Ef(©)de . (3)

This integral can be rewritten in terms of the distribution
function F(z):
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The integration interval in (3) has been reduced here to
the noise values which satisfy the condition z + ¢ > 1/2,
due to the action of the operator Q[z + £]. We note
that (y) is a function of  and o and coincides with the
transition probability of the process = + €.

For the uniform noise case, (4) becomes

0 forw<%—%orw>%+%
(Yu) =
raty—3) frj-g<z<i+g,
(5)
where the PDF has been defined as
1 L L
= for —— <& <= 6
ful@ = for —F <& (©)
and zero elsewhere. For the Gaussian noise case, (4)
becomes
1 (l - m)
=--® |22 7
(Yq) 5 l: p= } (7)
where

1 2
@[5] - / 37 dt
(o ovV2m Jo

is the error function. We are now in a position to calcu-
late the curves, D vs o, for the two noise cases consid-
ered above. Theoretical predictions shown in Fig. 4 are
in very good agreement with the digital simulations.

We note that as long as we are concerned with dis-
tortion, the optimal dither signal consists of a uniform
noise with amplitude equal to the quantization step. In
this case, the averaged quantization error is zero. For
smaller noise values, clipping effects on the signal are
present while for larger noise values, a reduction of the
system output range affects the response. In both cases,
the quantization error does not average to zero. Gaussian
noise, although showing qualitatively similar positive ef-
fects, is characterized by a worse performance.

It is worth noticing that the addition of noise plus aver-
aging procedure plays a crucial role in both the lineariz-
ing mechanism and the increase of dynamic range. As an
example, let us consider a constant input signal which
has an amplitude of 0.2 (threshold at 0.5). To achieve
a correct representation of this signal at the output, we
should arrange the system in order to have an averaged
output of 0.2. This result can be obtained if the signal
crosses the threshold two times out of ten (on average).
In such a case, we collect two “1”’s and eight “0”’s which,
averaged, make 0.2. To reach linearity such a probability
should be kept equal for all the input range, i.e., we need
a dither signal which is uniform over the whole quantiza-
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tion step and has an amplitude equal to the quantization
step itself. The problem with Gaussian noise is that the
PDF is not uniform. With such a noise source, the better
performance, with respect to distortion, is reached in the
z range where the PDF is more uniform, i.e., around the
origin or, for a fixed = interval, when ¢ — oco. However
in that case the output range is dramatically reduced.

The simple case analyzed before also serves to shed
some light on the subject of increase in dynamic range
due to the presence of dithering [14]. In the absence of
dithering, we have just one bit, no matter how we av-
erage. For this reason, the signal of amplitude 0.2 will
be read as just “0.” As we saw before, with an optimal
dither and averaging at least ten times, we can increase
the dynamic range enough to distinguish a-'signal of am-
plitude 0.2. It seems evident that if we want to increase
the dynamic range enough to distinguish a signal of am-
plitude 0.22, we need at least ten times as many averages
(see, e.g., oversampling techniques [19], implemented in
modern analog-to-digital converter systems). From what
we have said, it is clear that the averaging procedure is
truly efficient in increasing the dynamic range only if the
dither signal can span the entire input range with con-
stant probability. This is again the same condition met
before for an absence of distortion. We do not address
this issue any further in this paper.

III. STOCHASTIC RESONANCE IN
THRESHOLD SYSTEMS

In this section, we will show that SR, as observed in
threshold devices, can be interpreted under the same
scheme as the dithering effect. In fact, the dithering ef-
fect shows an optimal condition that can be achieved
by tuning the noise intensity, just like the SR condition.
Moreover, in this case, for the SR condition the frequency
of the periodic input does not play any role. The evidence
of SR in multithreshold systems will be given as well.

Let us consider a harmonic signal z(t) = A sin(wot) [20]
at the input of a threshold system. To take into account
the symmetrical shape of the signal =, we slightly modify
our previous system S according to the following rule:

-1 for z < —%

y(t) = 0 for—i<z<i (8)

1 form>%.

In this system, there are two symmetrical thresholds, cen-
tered around zero. Zero is also the average value of the
input signal and of the additive (dither) noise. The am-
plitude A is chosen smaller than the threshold value so
that, in the absence of noise, the system output y is al-
ways equal to zero. The addition of noise induces random
jumps above the upper and beyond the lower threshold
causing y to switch from “0” to “1” or “—1.” We are
interested in monitoring the presence of the input sig-
nal & in the output y. For this reason we consider the
y(t) time series and compute the corresponding power
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spectral density Sy (w). The statistical weight of the pe-
riodic component in the output signal can be monitored
by measuring the height of the narrow peak in Sy(w) at
w = wp. To eliminate the effect of random jumps, we
subtract the continuous background N(wo) and define
Py = 1/Sy(w0) - N(u)()).

The behavior of Py, = Py(o) for three different values
of amplitude A, for both the white Gaussian noise and
white uniform noise cases, is shown in Fig. 5. As can
be seen, P,(o) shows the typical SR profile: a sharp in-
crease up to a maximum value (resonant condition) and
a slow decrease. Apart from these features, common to
both cases, some differences are apparent. The uniform
noise curve is generally sharper and more pronounced,
the maxima happen at slightly different noise values. For
large noise, the Gaussian dither performs better than the
uniform one. The difference between the two curves de-
creases with increasing o and A.

A quantitative description of the P,(o) behavior can
be given following the reasoning already introduced in
Sec. II. In order to have a large periodic component at
the threshold system output y, the action of the added
noise should produce upward jumps (and inhibit down-
ward jumps) in coincidence with the half period in which
z(t) > 0. The same requirement holds for the symmet-
rical situation of the downward jumps in the half period
in which z(¢) < 0. This condition can be restated in

o uniform
© gaussian

P,(©)

0.0 05 10 15 2.0 25 3.0

FIG. 5. P, (a.u.) vs o (a.u.) for Gaussian noise (circles)
and uniform noise (squares), for three different values of the
input amplitude A: upper A = 0.1, middle A = 0.2, lower
A = 0.3, in a.u.. Theoretical predictions A, are shown with
solid lines, k = 0.7. Statistical errors are within 10%.
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terms of the threshold crossing probability, as in Sec. II.
If we generically call b/2 the distance between the “0”
level and the threshold (in Sec. II b = 1 was equal to the
quantization step), we can introduce the quantity

Ay(a)=F[g+A}—F[g—A] . (9)

A, (o) is a measure of the probability that y jumps from
state “0” to state “1” when x > 0 and does not when
z < 0. We can interpret A,(o) as proportional to the
amplitude of the periodic component of the output y(t),
at the input frequency vy = wo/2m, Ay(o) = kPy(o).
In spite of the simplicity of the assumptions made [we
ignored the periodic character and the actual shape of the
input function z(t)], Ay (o) reproduces fairly well (Fig. 5)
the behavior of Py(c), for a wide range of noise intensities
o and forcing amplitudes A, both for the Gaussian

smior=s (o[ 424] o [€20])

and for the uniform noise case
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FIG. 6. f(¢) (a.u.) for Gaussian and uniform noise. The
area under the distributions and enclosed between b/2 — A
and b/2+ A (dotted lines) equals Ay, and Ay, (shaded area),
o0g = 0y = 1 (a.u.). Inset: Ay, — Ay, vs 0, A = 0.2
(a.u.), theroretical prediction (solid line), and experimental
data Py, — P, (triangles).
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0 fOI‘ 5 < E _A T T T 1 T T
P. J
Ayu(L) =k 2(5-2+4) fort-A<Ll<tia e
04 " E
o
% for L > g-f—A H

(11)

with k£ constant related to the bin amplitude of the digi-
tally simulated PSD. As we anticipated, the positions of
the two maxima do not coincide. In the Gaussian case,
the maximum for A,, occurs at

while for the uniform noise case, the maximum occurs at

1 b L b
Gu—%(§+A> OI‘E—(§+A) .

Most notably o, increases with A while o, decreases.
They coincide for A ~ 0.3 (see Fig. 5). Figure 6 offers a
pictorial representation of the quantity A,, meant as the
area under the PDF, between /2 — A and b/2 + A (area
delimited by the dotted lines in Fig. 6). It is apparent
that the area under the Gaussian PDF (shaded area)
is smaller than the area under the uniform PDF until
about ¢ < b/2. For 0 — oo the two regions become
asymptotically equal and the difference between A,, and
Ay, tends to disappear (inset of Fig. 6).

(13)

A. Specialized noise dither

Following this reasoning, the performance of our
threshold device can be increased by introducing a proper
noise dither which maximizes the shaded area. Such a
noise has a disjoint uniform PDF, half centered around
the threshold value b/2 and half centered around —b/2:

1 b L b L
= S <t <A+ 14
fa(§) ZLfori2 2_5_ 5+ 5 (14)

and zero elsewhere. The amplitude A,(o), for this case,
is easily computed to be

Aya(L)
4 forA<f<b—A
=k 2+ L (L-b+A) forb—A<L<btAa
% for~é-’>b+A,

(15)

where we consider for symmetry only & > 0 as before.
In Fig. 7, Py(o) for the three different noise PDF’s are
shown for the intermediate amplitude A = 0.2, together
with theoretical estimate A,(0). As we anticipated, the
performance of the disjoint uniform PDF exceeds all the

FIG. 7. P, vs o for Gaussian noise (circles), uniform noise
(squares), and disjoint uniform noise (diamonds), A = 0.2.
Theoretical predictions A, are shown with solid lines, k = 0.7
as in Fig. 5. Statistical errors are within 10%. All the quan-
tities are in a.u..

others. In the small noise region (L/2 < A), our model
(15) cannot reproduce the digital data due to the inde-
pendence of our estimate from the shape of the periodic
signal. As a peculiar feature of Py4(c), a new maximum
appears for large noise intensity, due to the superposition
of the two uniform PDF’s in the region (b/2—A4,b/2+ A),
correctly reproduced by (15).

B. Multithreshold systems

Evidence of multipeaked curves has been recently re-
ported [21] in the study of brain neurons triggered by ex-
ternal stimuli. It has been suggested that such a behavior
could be addressed by physical models characterized by
the presence of more than two stable states and thus by
multithreshold systems. Without entering here into a de-
tailed discussion of the many different models proposed,
we consider the general features of our system (8) when
we are not limited by three states (two thresholds) any
more. Specifically, we consider the following system:

2n+1) (2n—1)
—n for -—gz— <z < —+——%—

(16)

y(t) = 0 for - <z <3

n forgznz——l)<w<@.

For a given n, we have 2n + 1 levels and 2n thresholds to
cross. In Figs. 8 and 9, we show P, (o) for the Gaussian
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FIG. 8. Pj; vs o with Gaussian noise for n = 1 (squares),
n = 2 (circles), n = 3 (triangles), and n = 4 (diamonds).
A = 0.2. Theoretical predictions Ay, are shown with solid
lines, k = 0.7 as in Fig. 5. Statistical errors are within 10%.
All the quantities are in a.u..

and uniform noise cases, respectively. In both cases, we
experimentally explore n = 1,2,3,4. The main features
can be summarized as follows.

(a) Py (o) vs o behavior is common to all the n > m
curves up to a o = (2m+1)b/2 value. For larger o, higher
n are explored and new thresholds come into play.

(b) In the Gaussian case, for finite n, P;'(o) shows a
single maximum, in analogy with the n = 1 case. The
bell shaped curve tends to become wider and smoother
as n increases. When n — oo, the maximum disappears
and the curve, for large o, is characterized by a horizontal
asymptote with value Pg°(oo) (dotted line in Fig. 8).

(c) In the uniform noise case, Py'(o) presents n dis-
tinct maxima, in correspondence with L = Lyax [Linax =
(2m — 1)b/2 + A for m = 1,...,n|, decreasing in ampli-
tude. When n — oo, for large L, the curve oscillates
around the asymptotic value Pg°(oo) (dotted line in Fig.
9).

A theoretical description for system (16), with n >
1, follows from a generalization of the results already
obtained for the simple case of n = 1. In this case we
consider n distinct PDF area sectors, each separated by a
distance equal to the threshold b. All the contributions,

0
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FIG. 9. Pj, vs o with uniform noise for n = 1 (squares),
n = 2 (circles), n = 3 (triangles), and n = 4 (diamonds).
A = 0.2. Theoretical predictions Ay, are shown with solid
lines, k = 0.7 as in Fig. 5. Statistical errors are within 10%.
All the quantities are in a.u.

for increasing n, are added to give the quantity A7 (o):

- S [( 20 4)
(G Y S

For the Gaussian case we have

na(0) =k Z{ [((2—7"——)134“4) /0]
o[(m-4) )

and for the uniform case we have

Ayu(L) = By, (L) +

(18)

Cyu(L)

with

for%<%—A

Bp(L)=k> { +(5-C5 b+ 4) + A (m—-1) for 2mlp-A<L<imlpg

m=1

24
™

for 2m=1p+ A< L < 2milp_ 4
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and
Cp(L) = %n for L > 2mtly 4

in good agreement with digital data. The horizontal
asymptote yields to A7°(co) = A (see Figs. 8 and 9).

IV. CONCLUSIONS

The use of the word “resonance” for the SR phe-
nomenon has been questioned since the very beginning
[1]. Recently, it has been demonstrated [22] that, for a
diffusion process, in a double well system, the meaning
of “resonance” as the matching of two characteristic fre-
quencies (or physical time scales) is indeed appropriate
for such a phenomenon, if the residence time of the two
states (in the bistable case) is taken into account as the
order parameter. For this system, the resonant condition
can be obtained either by changing the noise intensity or
by changing the input signal frequency. For the threshold
systems that we consider here, instead, such a frequency
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matching condition does not hold anymore [23] at the
moment that we have only one characteristic frequency
(periodic forcing). As expected, the change of the input
frequency does not produce any effect on P,(o) [20]. For
this reason the output signal enhancement [24] typical of
the SR phenomenon can be obtained, here, for nonperi-
odic signals as well.

It seems reasonable to conclude that SR in the thresh-
old systems considered here, far from being a resonant
phenomenon, can be more correctly interpreted as a spe-
cial case of the dithering effect [6,25] consisting of a
threshold crossing process aided by noise. For this class
of effects the name “noise induced threshold crossings”
seems more appropriate.
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FIG. 6. f(¢) (a.u.) for Gaussian and uniform noise. The
area under the distributions and enclosed between b/2 — A
and b/2+ A (dotted lines) equals Ay, and A,y (shaded area),
o, = 0y = 1 (au.). Inset: Ay, — Ay, vs 0, A = 0.2
(a.u.), theroretical prediction (solid line), and experimental
data Pyu — Py, (triangles).



